o

A STEMMING ALGORITHM FOR LATIN TEXT DATABASES

ROBYN SCHINKE*, MARK GREENGRASS*, ALEXANDER M. ROBERTSON' and
PETER WILLETT'!

Humanities Research Institute and Departments of History* and of Information
Studies’, University of Sheffield, Western Bank, Sheffield S10 2TN

This paper describes the design of a stemming algorithm for searching
databases of Latin text. The algorithm uses a simple longest-match
approach with some recoding but differs from most stemmers in its
use of two separate suffix dictionaries (one for nouns and adjectives
and one for verbs) for processing query and database words. These
dictionaries and the associated stemming rules are arranged in such
a way that the stemmer does not need to know the grammatical
category of the word that is being stemmed. It is very easy to overstem
in Latin: the stemmer developed here tends, rather, towards
understemming, leaving sufficient grammatical information attached
to the stems resulting from its use to enable users to pursue very
specific searches for single grammatical forms of individual words.

INTRODUCTION

AN IMPORTANT COMPONENT of any system for text searching is the ability
to identify accurately the variant word forms that arise from grammatical
modifications or alternative spellings of the words in a user’s query. Such variants
are normally encompassed by means of either right-hand truncation or stem-
ming. Truncation is carried out by the searcher, who removes as many letters
from the right-hand side of the word as seems appropriate to achieve a plausible
root, and the search then retrieves all words that commence with this root,
regardless of their endings. Stemming, conversely, is carried out automatically
by reducing all words with the same stem to a common form, typically by
removing the inflectional and derivational suffixes [1-3]. Stemming algorithms
for English have been discussed extensively in the literature [1-6] and there has
recently been much interest in stemming algorithms for other languages [7-12].
In this paper, we describe the development of a stemming algorithm to support
free-lext searches of Latin databases, an increasing number of which have
become available to scholars over the last few years.

In some respects, Latin is ideally suited to right-hand truncation, since it is
an inflected language which makes extensive use of suffixes to convey syntactic,
rather than semantic, information about words. In practice, however, a simple,
right-hand truncation search for a standard Latin word produces very poor

"To whom all correspondence should be addressed. Email address: p.willett@sheffield.ac.uk

Jowrnal of Documentation, vol. 52, no. 2, June 1996, pp. 172187
172

results for two principal reasons. The first problem is that many Latin words
have more than one distinct stem. For example, nouns such as vox (voice) yield
the stems ‘vox-" and ‘voc-’, while verbs such as agere (to do, drive) exhibit a
minimum of three stems: ‘ag-’, ‘eg-’, and ‘act-’. Accordingly, high recall will only
be achieved in a right-hand truncation search if the user knows all of the stems
of the query word and carries out several separate, but related, searches of the
database for each distinct query word. A further problem is that a simple
truncation search produces a large number of words that are unrelated to the
initial query. This arises not only because Latin roots tend to be quite short (e.g.
vox and agere as discussed above) but also because many Latin words with
different meanings have similar roots, e.g. the three words portus (harbour),
porta (gateway) and portare (to carry).

This combination of factors means that when Latin words are truncated to
their linguistic roots, such as ducere to ‘duc-’ or mater to ‘matr-', the resultant
stems are so short that many other words may begin with the same three or
four letters, and many of these words may not be semantically related to the
query word. For example, when the verb ducere (to lead) was sought in the
Patrologia Latina (a database that contains a huge compendium of patristic and
medieval thought originally published in the middle of the nineteenth century)
with the stem ‘duc-’, a total of 404 different words was retrieved. Only 118, just
29%, at most, of these words can actually be variants of the query verb since
Latin verbs have a maximum of 144 different forms and since twenty-six of the
forms of ducere commence with ‘dux-’, rather than ‘duc-’. By similar reasoning,
only 7% at most of the 2,104 words retrieved in a search of the same database
for the verb fero, ferre, tuli, latum (to carry), using the three stems ‘fer-’, ‘tul-’
and ‘lat-’, can possibly be variants of the query verb. The results are somewhat
better when words with longer roots are searched. For example, searching the
stem ‘ambul-’ for the verb ambulare (to walk) retrieved 129 different words, of
which 94 (73%) were found to be query variants. These occurrences are examples
of the general problem of overstemming, which occurs when too short a stem
remains after the removal of a word’s ending(s), with the result that unrelated
words are conflated to the same stem. The converse of this, understemming,
occurs when too short a suffix is removed (so that related words are not all
conflated to the same stem). Both problems occur with any stemming algorithm
[13, 14]; in the particular context of Latin, we believe that understemming is of
less importance since it can be circumvented, at least in part, by an appropriate
algorithm design, as detailed below.

Right-hand truncation can be used to search Latin text databases, but only
if the user has sufficient knowledge of Latin to be able to enter all of the necessary
stems for a given query word and to identify the (possibly large number of)
related forms in the search output. In this paper, we describe a stemming
algorithm for Latin that seeks to provide effective access to such databases for
users with only a basic knowledge of the language. The next section provides a
brief overview of the main characteristics of stemming algorithms, and we then
discuss some of the main features of Latin that need to be reflected if a stemmer
is to perform effectively. The following, and longest, section details the

173

development of our stemmer, building on an initial extremely simple procedure
in several stages to give a final algorithm that does, we believe, provide an
effective means of processing Latin dictionaries. The final section contains our
initial thoughts on how the stemmer will be implemented within a retrieval
system to allow the searching of Latin texts; this implementation will be discussed
in a future paper.

STEMMING ALGORITHMS

The rationale for stemming is that, for many languages, the semantically-useful
information in a word is in the stem and the suffixes merely change its
grammatical form. If this is correct, then words which are structurally similar
will also be related in meaning, and stemming may thus be expected to increase
the effectiveness of an information retrieval system. Stemming is also used in
natural language processing, where the identification of a particular suffix may
assist parsing, and textual studies of, for example, the grammatical structure of
a particular author’s writings.

A stemmer typically contains a list of rules, each consisting of a suffix and
the conditions under which it may be removed from a word. There are two
principal methods of applying the suffix rules. The more common is a longest-
match algorithm, which involves the removal of the longest suffix in the
dictionary that matches the ending of the query word. Alternatively, in an
iterative algorithm, suffixes are removed one by one in sequence. Thus, if a suffix
in the dictionary is found in the query word the former is removed and the word
is then checked again for the presence of further suffixes, with any more that
are found being removed also. Iteration is based on the observation that suffixes
are generally attached to the root in a certain order and they can hence be
removed in reverse order, e.g. the series of words computer, computerise and
computerisation. A stemmer may allow recoding to deal with spelling exceptions,
i.e. instances of roots varying in spelling depending upon the suffixes that
originally followed them (e.g. the words absorb and absorption). Rules may also
be included in a stemmer to prevent words being shortened excessively (e.g. to
prevent the removal of “-ing’ from ring or ‘-as’ from gas), with the possibility
of specifying different minimum stem lengths for different roots.

The English stemmer that is most widely used in information retrieval is
probably that described by Porter [4], who argues that there is a stage in a suffix-
stripping algorithm where the addition of more rules giving an improvement in
one area will cause an equal degradation elsewhere. A large number of rules can
make a stemmer unnecessarily complex and his algorithm hence uses only a
limited number of suffixes, organised into five main groups that are checked in
sequence by an iterative procedure. A novel feature of the algorithm is that it
characterises a word by its measure, which defines the occurrence of consonant-
vowel substrings within a word and which constrains the suffixes that are
available for removal at any stage of the processing of an input word. The
algorithm is simple in concept and highly efficient, and has been found to work
well in practice [2, 4]. Porter’s algorithm, like many others, has been designed

174

for processing general-purpose English text; an example of a special-purpose
stemmer is that described by Ulmschneider and Doszkocs [5] for processing
medical texts.

Stemming techniques can be applied to any language where the semantic
information is contained in the stem and where variant word forms are created
by adding suffixes to this stem, and the last few years have seen several reports
of the development of stemmers for languages other than English. Popovic and
Willett [7] describe the implementation of a stemmer for Slovene that contains
no less than 5,276 suffixes, each with its minimum stem length and one of eight
action codes which determine which of a list of context-sensitive rules should
be applied, and three different sets of recoding rules. French is another language
with a more complex morphology than English. This complexity is handled in
the stemmer described by Savoy [8] by means of grammatical categories. The
morphological analysis involves the use of a declension file, with the declension
for a particular word being identified from its terminal letter. In addition, there
are rules for derivational suffixes and some recoding rules. Kalamboukis [10]
presents a stemmer for modern Greek, a language with forty-one different
declensional categories, that covers both inflectional and derivational mor-
phology, but excludes the problem of accents. This algorithm 1s of interest since,
like the algorithm described in this paper, inflectional suffixes are processed
separately for different parts of speech (such as nouns, adjectives and verbs).
Still more complex procedures are required for stemming agglutinative languages
such as Turkish, where very large numbers of suffixes can be added to a basic
root [11], or for stemming languages such as Malay, which involve extensive
prefixing as well as suffixing [12].

There have been several studies that have evaluated the extent to which the
use of a stemmer can increase the effectiveness of retrieval from large text
databases. The evidence to date suggests that stemming will not bring about
significant increases in performance for English [15, 16] but that such
improvements can occur with other, more complex languages [10, 17].

INITIAL DESIGN CONSIDERATIONS

Latin words may readily be grouped into broad categories according to their
part of speech and general form, and it is thus simple to define a list of suffixes
that may be removed from any particular word. Nouns, for example, are
commonly grouped into five declensions, each with reasonably distinct endings
(as exemplified by the second declension endings shown in Figure 1) and most
adjectives use the suffixes of these five declensions. It is thus easy to compile a
list of twenty-seven distinct suffixes that should be removed from nouns and
adjectives. However, additional particles are added to Latin adjectives when they
are used in comparisons. For example, the adjective benignus, benigna, benignum
(kind) becomes benignior, benignius (kinder), and benignissimus, benignissima,
benignissimum (kindest). As a result, twenty-two additional suffixes must be
included if all adjectival forms are to be reduced to their appropriate stems.
Finally, certain types of verb forms, such as present and future participles,

175

- — —msrmmrmma e paaswavFIWE A LLIVE

Case Singular Plural
ending ending Tense Voice Mood Stem Medial Extra Possible
vowel particle suffixes
\b:;)cl::?::we _:s(-(uumr;i) A; E_Z; Present Active Indicative am- -a- g,s s,nt[, mus,
Accusative -um -0s (-a) Present Passive [Indicative am- -0- -a- r, ,ris, tur,
Genitive -1 -orum mur, mini,
Datw? = " Present Active Subjunctive am- - ?;ur s, t
Ablative -0 -18 mzls, ti,s, nt
Present Passive Subjunctive am- -e- r, ris, tur,
FIGURE 1. Second declension noun endings g;‘:l:, mini,
gerunds, and forms of the gerundive, are actually treated as if they were nouns ipelas Active Jndisative = 50 s 12:1:’15 E:,s nt{
and adjectives: these require the use of a further thirty-five suffixes if these forms Imperfect Passive Indicative am- -a- -ba- 1, mis, tur,
are to be reduced to their appropriate verbal stems. These additions result in a mur, mini,
final list of eighty-four suffixes for stemming nouns, adjectives and verbal nouns Imperfect Active Subjunctive amare- nmt,Iu ' g k
and adjectives. mus, tis, nt
The case of Latin verbs is very similar to that of nouns and adjectives, in that Imperfect Passive Subjunctive amare- I, ris, tur,
the basic list of suffixes which should be removed from verb forms is relatively nmtﬂ? S
small. All verb forms terminate in one of only thirteen different suffixes, Future Active Indicative am- -a- -bi/bo- s, t, mus,
regardless of their tense or mood, but additional particles are added to indicate it Passive Indicati . tis, nt
various verb tenses, thus increasing the number of suffixes that may need to be ¢ s ol - b il ;fm?s'mlil::i"
removed. This behaviour is exemplified in Figure 2, which lists all of the possible ntur :
forms for first-conjugation verbs such as amare (to love). When all of these Perfect Active Indicative amav- -i- sti, t, mus,
additional particles are taken into consideration, a minimum of ninety-four Peifoct Passive Todicalive amab: i‘éﬁ;n’“
suffixes must be removed from verbs to ensure that forms of all tenses are endings
stemmed, and no less than 262 suffixes would have to be removed in order to plus form
reduce verbs of i.i}l tenSf:s and moods to th.eir correct linguistic roots. When these Perfect Activs Subjimetve oI g omf got va; -
totals are combined with the suffixes which must be removed from nouns and G At
adjectives, one obtains a list of either 178 or 346 suffixes that should be removed Perfect Passive Subjunctive amat- noun
from Latin words in order to stem them correctly. ' c‘i‘dmg;
Although it is straightforward to compile such a list, its use is likely to result gfut‘v:j b:rm
in widespread overstemming for the reasons that we have discussed previously. Pluperfect Active Indicative amav- -era- m, §,
Indeed, it is pos.ﬂble to preFllct the types of v.vords which would be likely to b:e Pluperfect _——T —_ Lnoulfr,l tis, nt
overstemmed using such a list. For example, if the suffixes ‘-bam’, ‘-bas’, ‘-bat’, endings
-bamus’, ‘-batis’, and ‘-bant’ are removed from verb forms in the imperfect plus form
tensc., then_ OYers,temmmg may occur in p_rescn{-tense. verb forms wnth roots that Pluperfict T T T —— isse ﬁ{ to sbe ;
terminate in -b-’, e.g. the present-tense verb form bibamus (let us drink) would . e >
be stemmed to ‘bi-" (instead of the correct form ‘bib-"). The overstemming of Pluperfect Passive Subjunctive amat- noun
certain present-tense forms would also result from the removal of suffixes related endings
to the future tense such as -bit’ and ‘-bimus’, e.g. the word scribit (he writes) g}-u;_, bf;) o
would be stemmed to ‘scri-’ instead of ‘scrib-". Similarly, certain third-declension Future Perfect Active Indicative amav- -eri- m, s,
noun forms with stems ending in ‘-or-’ or ‘-ar-’ will not be stemmed correctly Future Perfect Passive Indicati mus, tis, nt
if the suffixes ‘-orum’ and ‘-arum’ are removed, e.g., the words nectarum (of the shiee ABVE MACAING e ;?5111:1
nectars) and laborum (of the labours) would be overstemmed to ‘nect-’ and ‘lab-’, plus gform
. . of to be

instead of the correct stems ‘nectar-’ and ‘labor-".

176

FiGURE 20 Verb structures for the first-conjugation verb amare (1o love)

In practice, Latin verbs can generally be reduced to three principal
components: the stem, a medial vowel, and a suffix (although an extra particle
may also be required in some cases, as shown in Figure 2). It is hence possible
to avoid overstemming many verb forms by removing only the suffixes which
indicate the verb’s person and voice. Of course, removing only these suffixes
results in many verb forms being understemmed, rather than overstemmed, e.g.
all of the forms of the verb ducere would be reduced to a total of nine distinct
stems, rather than to one. We believe that understemming is almost inevitable
if we are to avoid the conflation of similar stems from different Latin words
that has been discussed previously. In addition, the longer stems include
grammatical information about the words which may eventually be used to
initiate more specific types of queries, such as searches for particular tenses of
verbs, or for certain forms of adjectives. For example, by retaining at least some
grammatical information after the removal of a suffix, it is possible to distinguish
between the noun portus (harbour) and the verb portare (to carry). These words
share the same linguistic root of ‘port-’; however, an algorithm that removes
a minimal number of suffixes from Latin words will stem portus to ‘port-’, and
portare to ‘porta-’, ‘porte-’, ‘portav-" ‘portaba-’, ‘portabi-’, and several other
stems, all of which are longer than ‘port-’.

The principal reason for using stemmers in information retrieval is to increase
the recall of a search. It has thus been the case that most, though not all [2, 14],
of them have tended to err on the side of overstemming, rather than under-
stemming, so as to maximise the amount of relevant material that is retrieved
in response to broadly defined, recall-oriented searches of a database. While
such general searches may be carried out on Latin databases, the nature of the
stored text implies that most users will be academic scholars — classicists,
historians or philologists — who wish to retrieve texts that can answer highly
specific questions, e.g. the extent to which a particular poet uses a particular
phrase, the ways in which the meaning of a particular word differs in texts from
different periods, or the precise usage of a particular word or concept. In such
cases, we think that understemming is strongly to be preferred to overstemming.

DEVELOPMENT OF THE STEMMER

Initial experiments
Our initial algorithm contained a total of fifty-six suffixes: twenty-five of these
related to Latin nouns and adjectives and thirty-one to verbs, as detailed in
Figure 3. The initial test sample (sample A) consisted of 1,418 Latin words,
comprising a manufactured list of all of the possible forms of various types of
Latin nouns, adjectives and verbs. Care was taken to ensure that representative
words from all of the major declensions and conjugations were present in the
test sample, as well as words known to be irregular and potentially difficult for
an algorithm to stem correctly, e.g. esse (to be), ire (to g0), duo (two), renes
(kidneys) and res (thing).

In the first full test of the algorithm, only 66% of the words in sample A were
stemmed correctly. The great majority of the crrors were due to overstemming,

—arum -cbus -ibus -orum -1us -uum -ae -am

-ds -Cl -2m G5 -1a -18 -08 -ua
-ud -ul -um -us -a - -i -0
-U

(a)
-juntur -beris -erunt -untur -mini -ntor -ntur -stis
-tote -bor -€ro -mur -mus -nto -Tis -sti
-tis -tor -tur -iunt -unt -bo -ns -nt
-1 -te -to -m -r -3 -t

(b)

FIGURE 3. [nitial list of suffixes for (a) nouns/adjectives and (b) verbs

which was principally caused by the removal of suffixes relevant to verb forms
from nouns and adjectives (and, to a lesser extent, the removal of suffixes relevant
to noun forms from verbs). Many of these verb suffixes began with consonants,
such as ‘-tis’ and ‘-mus’, and often corresponded to suffixes relevant to nouns
and adjectives, such as ‘-is” and ‘-us’ plus the final consonant of a noun or adjec-
tive stem. For example, when the suffix ‘-tis’ was removed from the verb form,
amatis (you love) was stemmed correctly to ‘ama-’, but the noun dignitatis (of
honour) was overstemmed to ‘dignita-’ (instead of the correct stem ‘dignitat-").

Use of two sets of rules
The need to avoid removing verb endings from nouns and adjectives and to
avoid removing noun/adjective endings from verbs led us to include two separate
sets of suffixes (one for verb forms and one for noun/adjective forms) in the
algorithm, resulting in the creation of two separate dictionaries of stemmed
words when the algorithm is applied to a file of text. The first set of rules removes
the suffixes associated with the five declensions of nouns and adjectives, and the
second set of rules removes the suffixes associated with the four conjugations
of verbs, including deponent verbs. The algorithm is applied to an input query
word using first the set of noun suffixes and then the set of verb suffixes. The
result is that one dictionary contains a list of words in which nouns and adjectives
are stemmed correctly, while any other words are either not stemmed at all or
have been stemmed in such a way that they could not be confused with nouns
and adjectives. For the second dictionary, the converse applies: verb forms are
stemmed correctly, while nouns and adjectives are processed so that they cannot
possibly be confused with the verb stems. The aim of this approach is to ensure
that the two main classes of words are stemmed in an appropriate manner but
without the need for the extensive linguistic processing that would be required
to identify the parts of speech for each of the words in a text that was to be
stemmed.

When the new algorithm was tested, the results were far better than when all
ol the suffixes were removed from all of the words. Indeed, when sample A was
used, no less than 99% of the nouns and adjectives, and 93% of the verb forms,

174

were stemmed correctly. However, when the algorithm was applied to a second
sample of text, sample B, which consisted of 439 distinct words from a few,
short Latin poems in the Hartlib Papers [18, 19], the figures were effectively
reversed, with 92% of the nouns and 99% of the verbs being stemmed correctly.

The reason for the drop in the algorithm’s effectiveness in stemming nouns,
and its concomitant improvement in stemming verbs, may be explained by two
unrelated phenomena. However, the root cause of the differences in performance
undoubtedly lies in the fact that sample B consists of entire Latin sentences,
written to convey thoughts and feelings, while sample A is merely a list of care-
fully selected individual Latin words. For instance, sample A contains several
verbs with irregular forms and short stems, such as esse (to be), ire (to go) and
agere (to do), which the algorithm was unable to stem very accurately. On the
other hand, in the poems of sample B, the verbs used were more descriptive
words appropriate to the genre, with longer stems and fewer irregular forms.
Examples of such words include occumbere (to fall in death), temnere (to despise)
and extimescere (to dread), all of which the algorithm was able to stem correctly.

Neither the length of the stems nor the irregularity of the words could have
contributed to the decrease in the number of nouns which were stemmed
correctly in sample B, since most nouns have stems which are at least three
characters long, and since there are very few nouns which deviate from the
patterns set by the five declensions. In this case, the problem was caused by the
fact that when Latin is written in full sentences as literature, like the poems from
the Hartlib Papers, authors tend to add certain suffixes to words in addition to
their usual endings, specifically the practice of adding enclitic suffixes to the ends
of words instead of using conjunctions. The identification of this problem led
to the next modification of the basic algorithm.

Processing of enclitic suffixes

There are just three enclitic suffixes: ‘-que’, which is used instead of ‘and’: “-ne’.
which is used to indicate a question; and “-ve’, which is used in place of ‘or’.
For example, instead of writing pueri et puellae (the boys and the girls), authors
may write pueri puellaeque to give the same meaning. In such a case, the addition
of the terminal *-que’ effectively hides the suffix ‘-ae’, which ought to be removed
from the stem ‘puell-".

It is possible to remove the three enclitic suffixes from all words before
stemming starts but such a simplistic approach would lead to widespread
overstemming, since many words incorporate these syllables as a part of their
stems, e.g. agmine (from agmen: battle line), nive (from nix: snow) and torque
(from torquere: to twist), to name but a few. An analysis of a larger group of
Latin documents from the Hartlib Papers (the sample C that is described below)
showed that only 6% of words ending in ‘-ve’ and 4% of words ending in ‘-ne’
actually included an enclitic suffix, which would have to be removed in order
for the word to be stemmed correctly. It was hence decided to ignore the
problems caused by these two enclitic suffixes and not to attempt to remove
them from words prior to stemming. However, the same analysis showed that

12D

alque, quoque, neque, itaque, absque, apsque, abusque, adaeque, adusque,
denique, deque, susque, oblique, peraeque, plenisque, quandoque, quisque,
quaeque, cuiusque, cuique, quemque, quamque, quaque, quique,
quorumque, quarumque, quibusque, quosque, quasque, quotusquisque,
quousque, ubique, undique, usque, uterque, utique, utroque, utribique,
torque, coque, concoque, contorque, detorque, decoque, excoque, extorque,
obtorque, optorque, retorque, recoque, attorque, incoque, intorque,
praetorque

FIGURE 4. List of words from which the enclitic suffix -que’ should not be
removed in Step 3 of the algorithm shown in Figure 7

it was necessary to remove the enclitic suffix from no less than 83% of words
ending in ‘-que’ before those words could be correctly stemmed. It is thus clear
that this enclitic suffix is very widely used and that it cannot simply be removed
whenever it occurs at the end of a word (since this would still leave almost a
fifth of the words incorrectly stemmed). We have thus created a list of words
from which ‘-que’ should not be removed prior to stemming. This list, which is
shown in Figure 4, includes the most common conjunctions and query words
(such as atque (and), quoque (also) and quandoque (at what time soever) as well
as verbs of the second conjugation with stems in ‘qu-’ that will end in ‘-que’ in
the singular imperative (such as torque (twist) and coque (cook)).

Once these changes had been made to the algorithm, the percentage of nouns
in sample B which were stemmed correctly rose from 92% to 98%, while the
percentage of verbs stemmed correctly remained the same. These results
demonstrate clearly the need to take account of enclitic suffixes when stemming
Latin.

The resulting algorithm was then applied to a much larger file drawn from
the Hartlib Papers collection. This test sample (sample C) contained forty-nine
complete documents, which represent 5% of the total Latin documents in the
collection and which contain a total of 16,180 distinct words. The selected
documents cover a wide range of topics (including philosophy, astrology, medi-
cine, religion and linguistics, as well as a variety of personal letters) written by
at least twenty-six different authors, and can thus be regarded as typical of neo-
classical Latin. Application of the algorithm to sample C gave an overall success
rate of 99%, suggesting that any further enhancements of the algorithm should
be restricted to small, well defined groups of words and word endings since there
was clearly little scope for substantial further increases in performance.

Minor enhancements

Thus far, the minimum stem length, i.e. the minimum number of characters
which must remain after the removal of a suffix, had been set at three characters.
Changing this to two characters did not greatly improve the overall results but

did permit the correct stemming of a limited number of very short Latin words,
and the procedure was hence deemed to be worthwhile. Examples that were now
successfully stemmed included dies (day), via (road) and nreus (my).

181

‘I'he next modification tackled a small but important characteristic of nco-
classical Latin texts: the common use of the letter ‘j’ in place of the letter ‘i".
Although the Romans never used the letter ‘j” at all, centuries of linguistic
development led to the view that the use of the letter ‘1" before another vowel
should be considered as a ‘consonantal 1" that was generally replaced by the
letter ‘j’. For example, where the Romans wrote words such as fulfius, coniunx
(wife) and iam (now), later scholars often wrote Julius, conjunx and jam. The
algorithm was hence modified to transform all occurrences of the letter ‘j’ to the
letter ‘i’ prior to stemming. A similar difficulty was found to exist with the letters
‘v’ and ‘u’, which are often used interchangeably in neo-classical Latin, and an
analogous replacement strategy was hence adopted. It should be noted that,
although the introduction of the distinct letters ‘j” and ‘v’ did not occur until
after the period during which most classical Latin literature was written, many
such texts make use of both of these letters in modern editions. The use of only
one letter from each of these pairs thus enables the algorithm to stem Latin texts
of all periods: classical, medieval, Renaissance and modern.

Although the algorithm was able to stem Latin verbs with 99% accuracy at
this stage, the program still reduced the 144 verb forms to at least nine separate
stem classes. In order to determine whether this number of classes might be
reduced, the algorithm was altered to allow for the secondary removal of the
intermediate particles which indicate verb tenses (as shown for the first con-
jugation of verbs in Figure 2). When the program had already removed one of
the thirteen suffixes used to indicate a verb form’s person and number, it
subsequently removed three particles, and transformed two others. The particles
-ba-’, *-bi-’, and ‘-sse-’, which indicate the imperfect, future, and pluperfect
(subjunctive) tenses, respectively, were removed completely. The particles ‘-era-’
and “-eri-’, which indicate the pluperfect (indicative) and perfect (subjunctive)
tenses, respectively, were both transformed to the letter ‘i’. These changes did
in fact reduce the number of distinct verb stems to five, but caused some degree
of overstemming of words with stems including these particles, e.g. the word
conferam (I will consider) was overstemmed to ‘confi-’ instead of correctly to
‘confera-’. It was hence decided not to include secondary particle removal in the
algorithm.

The final algorithm

The rules used for stemming nouns and adjectives remain separate from those
rules used to stem verb forms. In both cases, suffixes are removed using a longest-
match procedure in which just the longest suffix that matches the end of an
input word is removed. No stemming takes place if a match cannot be obtained
with any of the suffixes in either of the suffix dictionaries. By structuring the
algorithm in this way, it is possible to ensure that entire classes of words in the
stemmed dictionaries do not need to be processed by the retrieval routines (which
will be described more fully in a subsequent communication). For example, since
the set of rules which removes suffixes that are common to nouns and adjectives
does not include any suffixes which are relevant to verbs, verb forms such as

182

portat (he carries), ducimus (we lead), and legunt (they choose) remain intact in
the dictionary which these rules create. These words thus cannot be reduced to
any stem which might be identical to the stem of a noun or adjective. Likewise,
the set of rules which removes suffixes relevant to verb forms either allows nouns
and adjectives to remain intact, or stems them in such a way that words such
as portis (to the gates), ducibus (by the leaders) and legum (of laws) cannot
produce stems which are identical to those of verb forms. This situation is
exemplified by Figure 5, which contains a range of word types and the stems
that resulted from application of the final version of the algorithm.

Unstemmed Noun-based Verb-based

stem stem
Apparebunt “. Apparebunt - . Apparebi
Aquila Aquil Aquila
Colluxisset Colluxisset - Colluxi
Deprehendebatur Deprehendebatur - = Deprehende
Dexisse Dexiss Dexi
Ducibus Duc Ducibu
Ducimus Ducim Duci
Elucidatione Elucidation Elucidatione
Fratre Fratr Fratre
Fratrem Fratr Fratre
Fratres Fratr Fratre
Fratri Fratr Fratr
Fratrum Fratr Fratru
Legum Leg Legu
Legunt Legunt Legi
Libertas Libert Liberta
Libertate Libertat -~ Liberta
Libertatem Libertat Libertate
Libertates Libertat Libertate
Libertatis Libertat Liberta
Mathematica Mathematic Mathematica
Mathematici Mathematic Mathematici
Mathematicum Mathematic Mathematicu
Nobilissima Nobilissim Nobilissima
Nobilissimam Nobilissim Nobilissima
Nobilissime Nobilissim Nobilissime
Nobilissimo Nobilissim Nobilissimo
Nobilissimum Nobilissim Nobilissimu
Portat Portat Porta
Portis Port Por

FIGURE S, Examples of swords and the corresponding stems produced by the final

version of the stenuning aleorithm

153

The final set of rules for stemming nouns and adjectives contains nineteen
suffixes while the set for stemming verbs contains twenty-five suffixes, as shown
in Figures 6(a) and 6(b), respectively. Nine of the twenty-five verb suffixes are
transformed into other endings, rather than being removed directly. For
example, the suffixes “-iuntur’, ‘-erunt’, ‘-untur’, ‘-iunt’, and ‘-unt’ are all changed
to the shorter suffix *-i’, a transformation that effectively normalises certain
irregular verb forms in the present and perfect tenses. Further, the suffixes
‘-beris’, ‘-bor’, and “-bo’, are changed to ‘-bi’ (allowing the conflation of all verb
forms of the future tense) and the suffix “-ero’, a slightly irregular suffix of the
future perfect tense, is changed to ‘-eri’. These modifications were carried out
to ensure that all verb forms of the same tense are reduced to a common stem,
thus allowing for more specific types of query to be searched.

The overall structure of the final algorithm is shown in Figure 7. [t has been
implemented in the C programming language, using some of the data structures
and character manipulation routines in the implementation of Porter’s English
stemmer that is given as an appendix to the paper by Frakes [3]. The performance
of the algorithm is exemplified by the sets of words and stems shown in Figure
5. While there are still some limitations in the stemmer that require further
attention, e.g. it has not been applied to vulgar Latin and no account is taken
of the effects of accentuation on words, we believe that it already provides a
powerful means of identifying a large fraction of the morphological variants of
Latin words.

CONCLUSIONS

Truncation and stemming are the most common approaches to term conflation
in free-text retrieval systems. Conventional right-hand truncation is
inappropriate for searching Latin texts since most Latin words have more than
one distinct stem and since many Latin words with different meanings may have
very similar roots. The stemming algorithm described in this paper seems to
provide an effective way of surmounting these two problems, as demonstrated
by the results shown in Figure 5.

-ibus -1us -ae -am -as -em -es -ia
-is -nt -08 -ud -um -us -3 -e
-1 -0 -u

(@)
-funtur -beris -erunt -untur -iunt -mini -ntur -stis
-bor -ero -mur -mus -ris -sti -tis -tur
-unt -bo -ns -nt -ri -m -r -5
-t

(b)

FIGURE 6. Final list of suffixes for (a) nouns/adjectives and (b) verbs (where
suffixes that are transformed, rather than removed, appear in italic type)

194

Read the next word to be stemmed.
Convert all occurrences of the letters " or ‘v’ to ‘1’ or ‘u’, respectively.
If the word ends in ‘-que’ then
if the word is on the list shown in Figure 4 then
write the original word to both the noun-based and verb-
based stem dictionaries and return to Step |
else remove ‘-que’.
4. Match the end of the word against the suffix list shown in Figure 6(a),
removing the longest matching suffix (if any).
5. If the resulting stem contains at least two characters then write this stem
to the noun-based stem dictionary
else write the original word to the noun-based stem dictionary.
6. Match the end of the word against the suffix list shown in Figure 6(b),
identifying the longest matching suffix (if any).
If any of the following suffixes are found then convert them as shown:
“iuntur’, “-erunt’, ‘-untur’, ‘-iunt’, and ‘-unt’ to -1’;
‘-beris’, “-bor’, and ‘-bo’ to *-bi’;
‘-ero’ to “-eri’
else remove the suffix in the normal way.
7. If the resulting stem contains at least two characters then write this stem
to the verb-based stem dictionary
else write the original word to the verb-based stem dictionary.

tad [nd

8. Return to Step 1 if there are more words to be processed.

FIGURE 7. The final version of the stemming algorithm

There are two major features of our algorithm that differentiate it from other
stemmers that have been described in the literature [1-12]. Firstly, the algorithm
generates two stem dictionaries. This it does by using two sets of stemming rules
which keep nouns and adjectives separate from verb forms by default, but
without the need to encode the parts of speech for the words that are to be
stemmed. Secondly. the policy of deliberately understemming many words leaves
enough grammatical information attached to the resultant word stems to enable
the algorithm to distinguish easily between different words with similar roots.
In addition, this feature will enable users to pursue very specific searches for
single grammatical forms of some types of words, an important requirement for
the intended users of the procedure.

Thus far, we have considered only the use of the stemmer for processing word
dictionaries, without saying anything about how the resulting stem dictionaries
will be searched. Because we hope that even scholars with limited expertise in
Latin (and probably even less expertise in term conflation techniques) will wish
to use the search software, we have chosen to require that they will enter only
the forms of words that are prominently listed in any standard Latin dictionary.
Fhese standard forms provide a natural search mechanism since they are one
ol the principal means by which students first learn the language. Qur initial

experiments have demonstrated the general validity of this dictionary-based
wcarch procedure, the detals of wineh will be presented in a subsequent paper.
185

When the query word is 2 noun or an adjective, the user will enter two forms:
the nominative and genitive singular. For example, the word puella (girl) will
be entered as ‘puella, puellae’, while the word dux (leader) will be entered as
‘dux, ducis’. When the query word is a verb, the user will enter four forms: the
present form, the present infinitive, the perfect form, and the past participle.
For example the verb amare (to love) will be entered as ‘amo, amare, amavi,
amatum’, and the verb ferre (to carry) will be entered as “fero, ferre, tuli, latum’.
In this way, the needs of the user who is unfamiliar with Latin grammar will be
served, since the query will involve just those word forms that are explicitly
listed in a standard Latin dictionary. Further, this query entry procedure will
surmount one of the most significant problems facing the accurate retrieval of
words from Latin texts, viz the fact that most Latin words have multiple stems.
Since Latin dictionaries always present words with the minimum number of their
forms needed to generate all of their possible grammatical variants, requiring
the users to type in the exact dictionary entry is not only much simpler for them
but also provides the stemmer with all of the information needed to identify
every variant of the query word. In fact, the search procedure can be automated
in large part if a Latin dictionary is available in machine-readable form. In this
case, the user can specify just a single query form, such as amare, use the
dictionary to identify the other necessary principal parts and then generate the
query for the retrieval system by means of a cut-and-paste operation.

ACKNOWLEDGEMENTS

We thank the British Library Research and Development Department and the
Library of the University of Sheffield for funding.

REFERENCES

1. LOVINS, 1.B. Development of a stemming algorithm. Mechanical Translation
and Computational Linguistics, 11, 1968, 22-31.

2. LENNON, M., PIERCE, D.S., TARRY, B.D. and WILLETT, P. An evaluation of
some conflation algorithms for information retrieval. Jowrnal of
Information Science, 3, 1981, 177-183.

3. FRAKES, W.B. Stemming algorithms. /n: FRAKES, W.B. and BAEZA-YATES, R,
eds. Information retrieval: data structures and algorithms. Englewood Cliffs:
Prentice-Hall, 1992, 131-160.

4. PORTER, M.F. An algorithm for suffix stripping. Program, 14, 1980, 130-137.

5. ULMSCHNEIDER, J.E. and DOSZKOCS, T. A practical stemming algorithm for
online search assistance. Online Review, 7, 1983, 301-308.

6. PAICE, C.D. Another stemmer. ACM SIGIR Forum, 24(3), 1990, 56-61.

7. POPOVIC, M. and WILLETT, P. Processing of documents and queries in a
Slovene language free text retrieval system. Literary and Linguistic
Computing, 5, 1990, 182-190.

8. sAvoy, 1. Stemming of French words based on grammatical categories.
Journal of the American Society for Information Science, 44, 1993, | 9.

I H{\

14.

15.

17.

AR TIARASTIL, LA, and EVENS, MW, L.'()!'I".Ipl'll’lﬂg woOrds, stems and roots as
mrdex terms inoan Arabic information retrieval system. Journal of the
fotcerican Society for Information Science, 45, 1994, 548-560.

kAT AMBOUKIS, T.2. Suffix stripping with modern Greek. Program, 29, 1995,
(O i

<Ol AK, A. and OFLAZER, K. Design and implementation of a spelling checker
for Turkish. Literary and Linguistic Computing, 8, 1993, 113-130.
AHMAD, F.. YUSOFF, M. and SEMBOK, T.M.T. Experiments with a Malay
stemming algorithm. Submitted for publication.

LoviNs, 1.B. Error evaluation for stemming algorithms as clustering
algorithms. Journal of the American Society for Information Science, 22,
1971, 28-40.

PAICE, C.D. An evaluation method for stemming algorithms. /n: CROFT, W.B.
and VAN RUSBERGEN, C.l., eds. SIGR ‘94 - Proceedings of the seventeenth
annual international ACM-SIGR conference on research and development in
information retrieval. London: Springer-Verlag, 1994, 42-50.

HARMAN, D. How effective is stemming? Journal of the American Society

for Information Science, 42, 1991, 7-15.

KEEN, E.M. The effect of stemming strength on the effectiveness of output
ranking. [n: JONES, K.P., ed. The structuring of information - Informatics 11.
London: Aslib, 1991, 37--50.

POPOVIC, M. and WILLETT, p. The effectiveness of stemming for natural-
language access to Slovene textual data. Journal of the American Society

for Information Science, 45, 1992, 384-390.

LESLIE. M. The Hartlib Papers Project: text retrieval in large datasets.
Literarv and Linguistic Computing, 5, 1990, 58-69.

GREENGRASS. M. Samuel Hartlib: ‘intelligenceur’ européen. In: Diffusion du
savoir et affrontement des idées, 1600-1770. Festival d’Histoire de
Montbrison, 1992, 213-234,

{ Revived verston received 13 December 1995)

